150

REFERENCES

(1] J. D. Cockroft, “The effect of curved boundaries on the distribution
of electrical stress round conductors,” J. Inst. Elec. Eng., vol. 66, pp.
404-406, Apr. 1926.

[2] W. J. Getsinger, “Coupled rectangular bars between parallel

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-27, NO. 2, FEBRUARY 1979

plates,” IRE Trans. Microwave Theory Tech., vol. MTT-10, pp.
65~72, Jan. 1962.

[31 F. Bowman, Introduction to Elliptic Functions with Applications.
New York: Dover, 1961, pp. 83-84.

{4] Harris Hancock, Theory of Elliptic Functions. New York: Dover,
1958.

Highly Efficient Calculation of Shielded
Microstrip Structures in the
Presence of Undercutting

VITTORIO RIZZOLI

Abstract—Shielded microstrip transmission lines of a trapezoidal cross
section such as resulting from the undercutting effect are analyzed by a
highly efficient numerical technique, essentially consisting in a new for-
mulation of the integral-equation approach. First, the method of electric
images is used to change the conventional Fourier-series expansion of the
Green’s function into a fast-converging expression allowing the time
required for computation to he reduced by more than two orders of
magnitude. Then, the discretization of the Fredholm integral equation for
the charge density on the strip surface is carried out by the Jacobi-Gauss
integration formula, ensuring optimum accuracy for a given order of the
solving matrix. In this way a very powerful tool for microstrip analysis and
design is obtained, combining generality of application and excellent
numerical performance.

I. INTRODUCTION

EVERAL METHODS are currently available [1, pp.

67-95] for computing the quasi-TEM properties of
microstrip transmission lines, each having particular
advantages and drawbacks that make it most suitable for
selected applications. In the commonly encountered case
of a system of thin strips enclosed by a rectangular metal
shield, the variational method (such as described in [2],
[3]) is unexcelled, both from the point of view of memory
storage and CPU time. However, this method is not
directly applicable when thick strips must be dealt with,
unless by approximate assumptions that are supported by
intuition but not rigorously justified [1, p. 83]. One possi-
bility for solving the thick-strip problem is the use of
finite-difference methods [4], [5], but these are usually too
slow for design applications when realistic strip thick-
nesses (i.e., a few micrometers) are considered, involving

Manuscript received November 8, 1977; revised May 16, 1978. This
work was partially sponsored by the Italian National Research Council
(CNR).

The author is with the Istituto di Elettronica, University of Bologna,
Villa Griffone, Pontecchio Marconi, Bologna, Italy.

an extremely large number of mesh points. This is particu-
larly true when the effects of small changes of the micro-
strip cross-sectional shape are to be investigated, such as
for the trapezoidal configurations resulting form under-
cutting [6]. In these cases. the method of solution to be
preferred is the integral-equation method [1, p. 89], requir-
ing direct manipulation of the Green’s function for the
rectangular inhomogeneous region enclosed by the shield.

Now, though an expression for the Green’s function is
readily obtained in rectangular geometry via Fourier-
series expansion [7], these series converge far too slowly to
be useful for design purposes when dealing with realistic
strip geometries, as will be discussed later on. However,
making use of the theory of electric images, the Fourier
expansion can be changed into a rapidly converging
series, allowing the computer time required for each
evaluation of the Green’s function to be reduced by at
least two orders of magnitude. The generation of this
fast-converging expression will be described in the next
section.

In Section III it will be shown that this expression
together with a new formulation of the integral-equation
method provides a very powerful tool for microstrip anal-
ysis and design, combining the generality of the integral-
equation approach with a numerical performance compar-
able with that obtained from the variational method.
Finally, an example of the influence of undercutting on
the electrical parameters of a shielded microstripline will
be given in Section IV.

II. COMPUTATION OF THE GREEN’S FUNCTION

The cross section of the rectangular region to be consid-
ered is shown in Fig. 1 together with the relevant geomet-
rical dimensions. For typical alumina microstrips we have
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Fig. 1. Inhomogeneous rectangular region for which the Green’s func-

tion has to be found.

d=10.635 mm, while the order of magnitude of @ and H is
one to a few centimeters.

Now let a unit charge be located at Py=(xq,yo), ¥o Z d.
Making use of a Fourier-series expansion with respect to
the x coordinate [7] the potential at P =(x,y), y >y, (i.e.,
the Green’s function for the rectangular region) can be
expressed as

)
G(P7PO;€r)= 2 Fn(y’yO;Er) sin (Cnx) sin (CnXO)

n=1

(M

where
c,="2=
a
and
SN )y osh (G (- ))
Eryoie) € sinh {G,(H =) cosh {C,(H~d)}

¢ tanh {C,(yo—d)} + tanh (C,d)
€ tanh {C,(H—d)}+ tanh (C,d)

)

For y <y, we still can make use of (1) and (2) due to the
reciprocity theorem G(P,Py)= G(Py, P). The relative di-
electric constant €, has been explicitly put into evidence in
(1) for later convenience. Note that for microstrip applica-
tions both y and y, are not greater than d+ ¢, where ¢ is
the strip thickness (typically of the order of a few micro-
meters).

From (2), the following asymptotic form can be readily
obtained for the coefficient F,(y.y¢;€,):

exp { - C,(y o)) [

nme,

1+ exp { =2C,(vo—d)}]

e, tanh {C,(y,— d)}+1
€ +1

®)

where

Kn(y’y())= Fn()%)’()? 6r) - {Fn(y,J’oi 1)+ an(yﬂzd—yO; 1)} =

151

To write (3), only the exponential terms that for increas-
ing n decay slower than exp {—(2nwd/a)} have been
retained, while the remaining ones have been set to zero.
Note that some of these terms may reduce to constants
depending on the particular values of y and y,,.

Equation (3) shows that in the worst case (i.e., for
y =y, the decay of |F,| with increasing n is essentially of
the form 1/n, which means that the convergence of the
series (1) in extremely slow. This clearly appears from Fig.
2 where a typical convergence plot for the series (1) is
reported. This plot refers to the geometry defined by (30)
(see Section IV) and is drawn for y =y, and |P — Py|=20
pm. It shows the dependence of the quantity Z(N)/Z(e0),
where 2(N) is the sum of the first N terms of (1), against
the number of added terms N. In typical cases, about 10*
to 10° terms may be needed to get 1073 to 10~* relative
accuracy on the sum, depending on the particular values
of P and P, Thus the computation of microstrip struc-
tures making use of (1) is extremely demanding in terms
of computer time.

To understand how a rapidly converging expression can
be derived from (1), let us now recall the concept of
partial image of an electric charge with respect to an
air—dielectric interface. If there were no rectangular shield
and the boundary conditions on the electric potential were
reduced to the discontinuity of the dielectric constant
occurring at y = d, then an exact expression for the Green’s
function at y >d would be obtained by superimposing the
free-space potentials of the actual charge, located at Py,
and its partial image located at Py, =(xg,2d— ).

The strength of the latter is given by

e —1

r=_€,+1' *)

Now turning back to the shielded microstrip problem, by
analogy with the open-boundary case, we can presume
that a major contribution to the Green’s function be
represented by the potential of the actual charge plus its
partial image, both computed in the presence of the shield
but assuming a homogeneous dielectric. This quantity can
be expressed as

G(P,Py; 1)+ rG(P, Po,; 1). 5)

The contribution (5) may be explicitly put into evidence
by adding (5) to and subtracting it from (1), thus obtain-
ing

G(P, Pyi€,)= G(P.Py; 1) +rG(P,Py; 1)

+ 3 K () sin (Cyx) sin (Coxo) (6)

n=1

Loxp (G =y} 1= exp {~2C(H—y)}

nreg 1—exp {—2C,H}

. 1= exp { =2C,yo} +r[ exp { —2C,(yo—d)} — exp {(-2C,d}]

1—exp {—2C,H}+r[ exp {—2C,(H—d)} — exp { —2C,d} ]

[ exp {—2C,d} —exp { —2C,(H—d)}].

(M
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Fig. 2. Convergence plot for the Fourier-series expansion of the Green’s function.

Since usually H —d>d, from (7) it is seen that | K| has
essentially the same rate of decay as (1/n)-exp
{—Q@nmd/a)}. As a consequence, the last term on the
right-hand side of (6) is a fast-converging series provided
that the ratio d/a be large enough. For a fixed substrate
thickness this means that the outer shield should be rela-
tively narrow to ensure good convergence of the series,
but this is not a very stringent requirement for microstrip
applications, since the effects of the shield are known to
be negligible when it is 5 to 10 times as wide as the center
strip conductor. As an example for the same geometry as
referred to in Fig. 2 we have d/a~0.084 (see (30) in
Section 1V); in this case only 18 terms are needed to get a
relative accuracy of 1072, while adding 37 terms reduces
the error to 1077, This is a fairly good performance as
compared to that obtained from (1). A substantially simi-
lar behavior can be observed over the whole range of
geometries involved by practically significant microstrip
problems.

By means of (6) the problem is thus reduced to finding
an efficient expression for the Green’s function of the
homogeneous rectangular region. Again, this problem can
be solved by the method of images.

First consider a homogeneous region between two in-
finite ground planes at y = 0, y = H. The Green’s function
for this case is known [8] and can be expressed as the
following:

1 2H 2H
8(P,Py)= i In — —.
7€y sinh? W(x xo) + sin? 77()’ yo)
2H 2H
(8)

To allow for the remaining boundary conditions, that is,
the metal walls at x=0, g, the original unit charge at
(xp,yg) is replaced by an infinite array of charges of
alternate signs (and equal magnitudes) located at (2na +
Xg:Yo)» — 00 <n<co. Summing all of the contributions to
the potential at (x,y) we obtain

o0

G(P.Pi1)= 2 [ go(x..2na+ xo,y,)

€)

which is the required expression. Note that the nth term of
(9) (i.e., the quantity in square brackets) has an exponen-
tial decay with increasing |n| (for |n| large) of the form

— 8o(x,y,2na — xg,y,) |

exp {-2]}1]%}. (10)

For commonly encountered microstrip configurations a
and H have the same order of magnitude so that (9)
converges much faster than the third term on the right-
hand side of (6). Thus the CPU time required to compute
(6) is essentially determined by the latter.

A convergence plot of the expression (6) is given in Fig.
3 for the same geometry as referred to in Fig. 2. For
convenience, the quantity to be plotted is now defined as

where X (N) is the sum of (5) plus the first N terms of the
infinite summation appearing in (6). A comparison be-
tween Figs. 2 and 3 clearly shows the dramatic improve-
ment in numerical efficiency that is obtained by using (6)
and (9) instead of (1). In fact, the computer time needed

10000 { (11)
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Fig. 3. Convergence plot for the fast-converging expression of the
Green’s function.

to find the Green’s function by (1) with a relative ac-
curacy of 1072 is typically 250 times as large as that
required to get the same result from (6) with a relative
error as low as 1071,

An interesting point appearing from Fig. 3 is that for
the case considered here (5) actually represents a major
contribution to the Green’s function as suggested by the
intuitive argument presented before. In fact, neglecting at
all the infinite summation in (6) would lead to an error
smaller than 0.05 percent. Thus for this case we can write

(12)

Further investigation has shown that the error involved in
(12) is a rapidly increasing function of |P — Pgy| but re-
mains less than about 0.5 percent for |P — Py <0.1 mm
for d=0.635 mm and ¢,~10. In all such cases, (12) can be
used to calculate the Green’s function, thus further reduc-
ing the computation time by a factor of about 20. Note
that this is by no means a trivial point, since many
microstrip applications of practical interest involve the use
of strip conductors definitely narrower than 0.1 mm (e.g.,
the 3-dB interdigital coupler).

A final remark concerns the singularity of the Green’s
function at P= P,. First let y,>d. In this case by inspec-
tion of (6) and (9), it is found that the singularity is
confined to the quantity g,(P,P,) appearing in the first
term on the right-hand side of (6). For later convenience,
the expression (8) for gy(P,P,) is now rewritten in the
form

G(P,Py;e)~=G(P,Py. 1)+ rG(P,Py,; 1).

(X — Xg)

) W(y —)’0) }
2H

go( P, Py)= 4—;; In l sinh? + sin® —>

2H 2H

o X mxg) o (Y —vo)
sinh oVl + sin H

. {W(X—xo)}2+{7r(y—yo)}2

47re,

+ So(P, Py) (13)
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where

1
So(P.Py)=— Tre, In [{

(X — Xo) 2+ 7(y—yo) \?
2H 2H '

(14)
Note that the first and second terms on the right-hand
side of (13) are regular at P= P, so that the singularity is
reduced to the simple logarithmic form (14). The Green’s
function may then be expressed as

G(P,Py;e)=Gr(P,Pye,)+ S(P,Py) (15)
where G is regular at P= P, and S=S§,. An expression
for G is readily obtained from (6), (9), and (13).

In the case y,= d the actual charge and its partial image
are superimposed (P,=P,,), so that (5) reduces to

(14+r)G(P, Py 1). (16)
Thus (15) is still valid with the new definition
S(P, Po)=(1+7)So(P, Py). (17)

The expression (15) of the Green’s function is particulary
convenient in view of the application of the integral-equa-
tion method, since it allows the singular terms to be
directly handled in closed form.

III. APPLICATION OF THE INTEGRAL-EQUATION

METHOD

The rapidly converging expression of the Green’s func-
tion that was derived in the previous section will now be
used together with a new formulation of the integral-equa-
tion method to compute the electrical parameters of the
shielded microstrip structure in Fig. 4. To approximately
account for the effects of undercutting, the cross section
of the strip conductor is assumed to be of trapezoidal
shape [6]; the degree of undercutting is related to the
values of the angles ¢, ¢,.

Let the center conductor of the structure be held at a
constant potential of 1 V. Then a Fredholm integral
equation for the unknown charge density on the strip
surface is

1=95G(P’P02€r)P(Po) dsy (18)

where P, P, are points on the strip contour, and ds, is the
differential line length around P,

To change (18) into a matrix equation, the surface of
the strip conductor is usually divided into a number of
subsections and a uniform or linear charge density distrib-
ution is assumed on each section {7]. In this paper we will
make use of the well-known properties of the integration
formulas of Gaussian type [9] in order to optimize the
discretization process, that is, to obtain optimum accuracy
for a given order of the solving matrix.

As a first point note that the charge density p(P,) has a
singularity at each corner of the integration path. From
simple static considerations [10] it is found that the be-
havior of the charge density in the vicinity of each singu-
lar point depends on the angle between the two intersec-
tion conductors in the way summarized in Table 1.
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Fig. 4. Cross section of shielded microstrip line in the presence of
undercutting.

TABLE 1
BEHAVIOR OF THE CHARGE DENSITY IN THE VICINITY OF EACH
SINGULAR POINT ON THE COUNTOUR OF INTEGRATION

Corner Behavioy of ¢ (PD)

d>,|~7r
27r‘¢1
A ]PD - Al
by -
21r—¢2
B IPD - B}
-9,
+¢
¢ -l
o]
..¢2
‘Il+¢2
D ]PO - D]

The integral on the right-hand side of (18) can now be
decomposed into the sum of four contributions of the
form

' a.pietpo ds, (19

arising from the four sides of the trapezoidal conducting
boundary. In (19) it is understood that the coordinates of
the point P, are related to the variable of integration s, by

2s
=X+ 1(1+——>cos€

T
2
y0=Y+%(1+%)sina (20)

where X, Y, 8 are constants whose values can be obtained
from Fig. 1 by inspection, and T is the length of the side
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under consideration. If the charge density is now given the
expression

o) =(3 =) (3 + 3 RP)=Ws)R(P) @D

and a, 8 are chosen according to Table I so that the
function W(s,) accounts for the singularity of the in-
tegrand at s,= =+ 7/2, then R(P,) turns out to be regular
and finite over the closed interval — T/2 <s,<T/2. Thus
if P does not belong to the integration path we can
compute (19) by the Jacobi—Gauss integration formula [9]

fr/z W(so) G(P, P €, ) R(Py) dsg
~-7/2

n
= 2 HiG(P7P1;€r)Rz (22)
i=1
where m is an integer. The point P, appearing in (22) is
obtained from (20) by letting 25,/ T= x,, where x, is the
ith zero of the polynomial

V()= (1= %) (0 x) P (1= )™ (14 0P

(23)
The ith weight has the expression
H = To+b+1 T(m+a+DI'(m+B+1)
(T(m+a+B+1))
2m, 00
2"m! (24)

(1=x){Vo(x))
(I' = Euler’s function), and R, = R(P).

If P belongs to the integration path, i.e., is obtained
from (20) for sy=s(— 7/2<s<T/2), then the integrand
of (19) has a logarithmic singularity at s,=s. In this case
we make use of (15) and write

fm W(so) G(P, Py; ) R(P,) ds,

T/2
= | W0 Ga(P. Poic)R(Py) iy

W) | 4
Wy | %

' f " WOoS(P.R)| R(P - R(P)
+ W(s)R(P) ) T2 S(P,P,) dsy
-T2

(25)

The first two terms on the right-hand side of (25) have a
regular integrand for — 7/2<s,<7/2 (in particular, the
integrand of the second term vanishes at s,=ys) and can
again be approximated by the Jacobi—Gauss formula; the

third term can be exactly calculated by means of (14).
Letting P= P, in (25) yields

T/2 n
f_ /2 G( s Py €,)p(Py) dsy= 2 inRi

i=1

(26)

where

];1=H1G(PJ’P1’€r) (17&]) (27)
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- $ st = |
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K ( T)a+/3+1

1+x\#
1+x,

_ a B
2meg\ 2 (1 XJ) (1+xj)
7T(1—x,)

7T(1+x)) }

—(1+x) I A

(28)
According to the previous section, in (28) we have K=1+
r if the side being considered is 4B, K=1, otherwise.

Finally, the contribution to the capacitance per unit
length of the microstripline, arising from the side under
consideration, may be put into the form

> HR.

i=1

[T p(Posy= (29)
—-T/2

At this stage the way the integral equation (18) is dis-
cretized has become evident. For each side of the conduct-
ing boundary a set of discrete points P, and a correspond-
ing set of scalar unknowns R, is chosen according to the
above discussion. The electrostatic potential at any of
these points, say P, is then expressed as the sum of three
integrals of the form (22) and one integral of the form
(25). and equated to 1. Repeating the same procedure for
all the values of j yields a matrix equation for the R’s.
The off-diagonal terms of the system matrix are given by
(27), while the diagonal terms have the form (28). Once
the system has been solved by matrix inversion the capaci-
tance can be found by adding four contributions of the
form (29). To speed up the computations, once the values
of ¢, and ¢, (usually ¢,=¢,) have been established in
relation to a given technological process, the abscissas and
weights of the Gaussian integration for selected values of
m are calculated once and for all, and then stored in the
computer memory as DATA items.

IV. NUMERICAL RESULTS

The performance of the above approach will now be
discussed by comparison with the variational method [1],
[2] for the special case of a thin microstrip (=0,
¢, = ¢, =0). In this case the Jacobi-Gauss formula re-
duces to a standard Chebyshev—Gauss integration [9]
since a=fB=—1/2.

Let us consider a microstripline having the following
geometrical parameters (see Fig. 4):

a=76mm d =0.635 mm

H =10 mm e =10 (30)
b, =75mm
w =75 pm b, = 25 pm. (31)
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While (30) can be considered typical, (31) define a highly
asymmetrical cross section, i.e., an extremely narrow strip
very close to the right electric wall. This choice is made
intentionally, in order to give a clear account of the
performance of the method in a very ill-conditioned case.
Note that such dimensions are not unrealistic for present-
day MIC applications; for instance, the geometry de-
scribed by (31) could be associated with one of the odd
modes propagating in a microstrip 3-dB interdigitated
coupler [11].

Now let M be the total number of scalar unknowns
used to solve the problem. The characteristic impedance
Z, of the microstripline was computed for several values
of M ranging from 3 up to 200. Since no appreciable
change was found between Z,(100) and Z_(200), the latter
was assumed as the “true value” of the impedance, i.e.,
Z,(200)~Z (o0). The percentage error 100 {Z.(M)/Z,
(200)—1} is plotted against M in Fig. 5, where the error
resulting from the application of the variational method
[3] is also reported. This error is in excess (+0.61 percent)
because the impedance was obtained from a lower-bound
calculation of the capacitance. Note that the variational
formulation of [3] had to be used for the present case,
since the method of [2], based on the computation of a
symmetrical cell, is inadequate for the highly asymmetri-
cal geometry considered here. Fig. 5 shows that the ac-
curacy of the solution is rapidly increasing with increasing
M; for M >20 the error is lower than 1 percent, while an
accuracy better than 3 percent (which is usually enough
for all practical purposes) is obtained for M as low as 10.
From the figure it can be seen that the integral-equation
method becomes more accurate than the variational ap-
proach for M larger than about 24.

The CPU time required to compute the characteristic
impedance is plotted against M in Fig. 6. Curves @ and b
refer to the use of the expressions (6) and (12) for the
Green’s function, respectively. The latter yields practically
the same accuracy as the former since in the present case
w<0.1 mm. The unit used to measure time is the com-
putation time required to obtain the variational solution.
Fig. 6 shows that the integral-equation approach yields
the same accuracy as the variational method (see the
vertical line in the figure) in less than 4 time units by
using (6) and slightly more than 1.5 unit by (12). Further
note that if a 3-percent error is tolerated (M = 10), the
computation can be carried out in 0.6 time units by (6)
and less than 0.3 time units by (12).

The above considerations clearly show that the particu-
lar formulation of the integral-equation method described
in this paper is very efficient from the numerical point of
view, its performance being comparable with that ob-
tained from the variational method. Furthermore, an ex-
cellent tradeoff between accuracy and time requirements
can be obtained, which makes the method attractive for
design applications. The situation is even more favorable
for better conditioned geometries than the one considered
above, such as symmetric microstrip lines.
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Fig. 6. CPU time required by the integral-equation solution versus order of the matrix to be
inverted. Curve a corresponds to the use of (6) for the Green’s functions, curve b to the use
of (12).

An illustrative application to thick microstrips is shown ues considered encompasses both the cases of thin- and
in Fig. 7, where the characteristic impedance of the same thick-film circuitry [12].
microstrip as considered before is plotted against strip A few indications of technical interest can be drawn
thickness ¢ in the cases of: a) no undercutting (¢, =¢,= from Fig. 7. It is well known [I, pp. 32-34] that the
90°); b) “normal” undercutting (¢,=¢,=45°); and ¢) technique used to define patterns in metal layers strongly
“heavy” undercutting (¢, =¢,=30°). The range of ¢ val- influences the resulting cross-sectional shape of the strips.
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If a very thin seed metal layer is etched and then plated to
increase thickness and lower conductor losses, then a
cross section with practically no undercutting will result,
In this case, the change of the electrical properties of the
microstrip lines with respect to the ideal thin-strip case
may be quite large as shown by Fig. 7 (curve a), especially
in the case of tightly coupled strips. On the other hand, if
a thick metal layer is etched to directly obtain the final
circuit, then “normal’: undercutting will typically occur.
The electrical behavior of the microstrip in this case is
definitely closer to that of the zero-thickness strip, as can
be seen from the figure (curve b). This is found to be true
to an even greater extent in the case of “heavy” undercut-
ting (curve c).

A final remark concerns the behavior of fired-film (or
thick-film) circuits. The cross-sectional shapes of the con-
ductors built by this technique [}, p. 44] are well ap-
proximated by the trapezoidal shape of Fig. 4 with ¢, and
¢, of the order of 30°, corresponding to the “heavy”
undercutting case considered above for thin-film circuits.
Thus it is not surprising that conventional microstrip
calculations based on the zero-thickness assumption may
be used [12] to accurately design thick-film devices.

The above considerations have limited significance
from the design standpoint since they only provide quali-
tative information. In order to thoroughly account for the
effects of undercutting one should determine how the
zero-thickness design data for practical devices must be

¢, =45°); c—*heavy” undercutting (¢, = ¢,=30°).

modified when dealing with microstrip lines of trapezoidal
shape. Such problems are currenily being investigated and
the results will be reported elsewhere.
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