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Highly Efficient Calculation of Shielded
Microstrip Structures in the

Presence of Undercutting

VITTORIO RIZZOLI

Afmtract—Sfsfelded nricrnstrip transmission fifes of a trapezoidal cross

section such as resulting from the ondercsstthsg effect are anafyzed by a

highfy efficient nomerieal technique, easentiafly consisting iu a new for-

mofation of the integraf-equatfon approach. Fiit &c method of electric

images is used to change the conventional Foorier-series expansion of the

Green’s fooetfon into a fast-converging expression aflowing the time

required for computation to be reduced by more than two orders of

m@~de. men, the tlwetkation of the Fredholm integraf equation for
the charge density on the strip sorface is carried out by the Jacobi-Gauss

integration formrd~ ensuring optimmn accuracy for a given order of the

solving matrix. In this way a very powerful tool for rnicrostrip analysis and

design is obtafn~ combining generality of application and excellent

rrmnerieaf performance.

I. INTRODUCTION

s EVERAL METHODS are currently available [ 1, pp.

67–95] for computing the quasi-TEM properties of

microstrip transmission lines, each having particular

advantages and drawbacks that make it most suitable for

selected applications. In the commonly encountered case

of a system of thin strips enclosed by a rectangular metal

shield, the variational method (such as described in [2],

[3]) is unexcelled, both from the point of view of memory

storage and CPU time. However, this method is not
directly applicable when thick strips must be dealt with,
unless by approximate assumptions that are supported by
intuition but not rigorously justified [1, p. 83]. one possi-

bility for solving the thick-strip problem is the use of

finite-difference methods [4], [5], but these are usually too

slow for design applications when realistic strip thick-
nesses (i.e., a few micrometers) are considered, involving
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an extremely large number of mesh points. This is particu-

larly true when the effects of small changes of the micro-

strip cross-sectional shape are to be investigated, such as

for the trapezoidal configurations resulting form under-

cutting [6]. In these cases, the method of solution to be

preferred is the integral-equation method [1, p. 89], requir-

ing direct manipulation of the Green’s function for the

rectangular inhomogeneous region enclosed by the shield,

Now, though an expression for the Green’s function is

readily obtained in rectangular geometry via Fourier-

series expansion [7], these series converge far too slowly to

be useful for design purposes when dealing with realistic

strip geometries, as will be discussed later on. However,

making use of the theory of electric images, the Fourier

expansion can be changed into a rapidly converging

series, allowing the computer time required for each

evaluation of the Green’s function to be reduced by at

least two orders of magnitude. The generation of this

fast-converging expression will be described in the next

section.

In Section HI it will be shown that this expression

together with a new formulation of the integral-equation
method provides a very powerful tool for rnicrostrip anal-

ysis and design, combining the generality of the integral-

equation approach with a numerical performance compar-

able with that obtained from the variational method.

Finally, an example of the influence of undercutting on

the electrical parameters of

be given in Section IV.

II. COMPUTATION OF

a shielded microstripline will

THE GREEN’S FUNCTION

The cross section of the rectangular region to be consid-

ered is shown in Fig. 1 together with the relevant geomet-

rical dimensions. For typical alumina microstrips we have
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Fig. 1. Inbomogeneous rectangular region for whrch the Green’s func-
tion has to be found.

d= 0.635 mm, while the order of magnitude of a and H is

one to a. few centimeters.

Now let a unit charge be located at POZE(XO,YO),YO > d.

Making use of a Fourier-series expansion with respect to

the x coordinate [7] the potential at P - (x,y), y > y. (i.e.,

the Green’s function for the rectangular region) can be

expressed as

G(P, PO;C,) = ~ F.(Y,YO; E,) sin (C.X) sin (C.XO) (1)
n=l

where

c.=:

and

K(YIYO; %)= ~*60
cosh { CJyO - d)}~ sinh {C~(H–_Y)} ~osh {C~(H– d)}

c, tanh { C’H(YO– d)} + tanh (Cd)
(2)

E, tanh { C~(H–d)} + tanh (C~d) “

Fory <y. we still can make use of (1) and (2) due to the

reciprocity theorem G(P, F’o) = G(PO, P ). The relative di-

electric constant c, has been explicitly put into evidence in

(1) for later convenience. Note that for rnicrostrip applica-

tions both y and y. are not greater than d+ t, where t is

the strip thickness (typically of the order of a few micro-

meters).

From (2), the following asymptotic form can be readily

obtained for the coefficient Fn(y ,_Yo;e,):

w {-- C.(Y –Ye)}
nmo

[1+ exp {-2 C.(yo-d)}]

c, tanh {C~(~o–d)} + 1. (3)

6,+1

151

To write (3), only the exponential terms that for increas-

ing n decay slower than exp { – (2nnd/ a) } have been

retained, while the remaining ones have been set to zero.

Note that some of these terms may reduce to constants

depending on the particular values of y and Yo,

Equation (3) shows that in the worst case (i.e., for

Y =Yo) the decay of \F“ I with increasing n is essentially of
the form 1/n, which means that the convergence of the

series (1) in extremely slow. This clearly appears from !Fig.

2 where a typical convergence plot for the series (11) is

reported. This plot refers to the geometry defined by (30)

(see Section IV) and is drawn for y =yo and II- Pol ==20

~m. It shows the dependence of the quantity Z(N)/Z(m),

where X(N) is the sum of the first N terms of (1), against

the number of added terms N. In typical cases, about 104

to 105 terms may be needed to get 10-3 to 10-4 relative

accuracy on the sum, depending on the particular values

of P and Po. Thus the computation of microlstrip struc-

tures making use of (1) is extremely demanding in terms

of computer time.

To understand how a rapidly converging expression can

be derived from (l), let us now recall the concept of

partial image of an electric charge with respect to an

air–dielectric interface. If there were no rectangular shield

and the boundary conditions on the electric potential were

reduced to the discontinuity of the dielectric constant

occurring at y = d, then an exact expression for the Grelm’s

function at y > d would be obtained by superimposing the

free-space potentials of the actual charge, located at PO,

and its partial image located at PO,E (xo, 2d ‘J~o).

The strength of the latter is given by

6,—1
~=_—

Cr+l “
(4)

Now turning back to the shielded microstrip problem, by

analogy with the open-boundary case, we can presume

that a major contribution to the Green’s function be

represented by the potential of the actual charge plus its

partial image, both computed in the presence of the shield

but assuming a homogeneous dielectric. This qpantity can

be expressed as

G(l’, Po; l)+rG(P, Po,; 1). (5)

The contribution (5) may be explicitly put into evidlence

by adding (5) to and subtracting it from (l), thus obtaini-

ng

G(P, Po; Er)= G(P, PO; l)+rG(P, PO,; 1)

+ ~ Kn(Y,yo) sin ( C.x) sin (QJ (6)
~=1

where
exp { – C.(y–yo)} .1 – exp { –2CH(H–JJ)}

K~(,V,,Vo) = ~.(.Y>YO; % )- {~.(YJo; 1)+ ~E(y,2d-yo; 1)} = r nmo 1– exp {–2C.H}

1– exp {–2C~o)+r[ exp {–2Cn(yo–d)}– exp {–2C.d}l

1– exp {–2C~H}+r[ exp {–2Cn(H-d)}– exp {–2Cnd}]

[ exp {-2 C~d}-exp {-2 Cn(H-d)}]. (7)
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Fig. 2. Convergence plot for the Fourier-series expansion of the Green’s function.

Since usually H – d>>d, from (7) it is seen that IK. I has

essentially the same rate of decay as (1/n) .exp

{–(2n~d/a)}. AS a consequence, the last term on the
right-hand side of (6) is a fast-converging series provided

that the ratio d/a be large enough. For a fixed substrate

thickness this means that the outer shield should be rela-

tively narrow to ensure good convergence of the series,

but this is not a very stringent requirement for microstrip

applications, since the effects of the shield are known to

be negligible when it is 5 to 10 times as wide as the center

strip conductor. As an example for the same geometry as

referred to in Fig, 2 we have d/a~O.084 (see (30) in

Section IV); in this case only 18 terms are needed to get a

relative accuracy of 10 – 3, while adding 37 terms reduces

the error to 10– 7. This is a fairly good performance as

compared to that obtained from (l). A substantially simi-

lar behavior can be observed over the whole range of

geometries involved by practically significant microstrip

problems.

By means of (6) the problem is thus reduced to finding

an efficient expression for the Green’s function of the

homogeneous rectangular region. Again, this problem can

be solved by the method of images.

First consider a homogeneous region between two in-

finite ground planes at y = O,y = H. The Green’s function

for this case is known [8] and can be expressed as the

following:

1
go(~, PO)= ~ in

sifi2 77(.X– Xo) + sin2 7r(y +yo)

2H 2H

W(X – Xo) + sin2 77(-Y–yo) “
sinh2

2H 2H

(8)

To allow for the remaining boundary conditions, that is,

the metal walls at x = O, a, the original unit charge at

(Xo,yoj is replaced by an infinite array of charges of
alternate signs (and equal magnitudes) located at (2na t
XO,YO),— m < n < m. summing all of the contributions to

the potential at (x,y) we obtain

G(P, PO; 1)= ~ [ go(x>y> 2na + XO,Yo)
~=~

– go(x,y, 2na – xo,yo) ] (9)

which is the required expression. Note that the nth term of

(9) (i.e., the quantity in square brackets) has an exponen-

tial decay with increasing In I (for In I large) of the form

exp(-4nl~} (lo)

For commonly encountered microstrip configurations a

and H have the same order of magnitude so that (9)

converges much faster than the third term on the right-

hand side of (6). Thus the CPU time required to compute

(6) is essentially determined by the latter.

A convergence plot of the expression (6) is given in Fig.

3 for the same geometry as referred to in Fig. 2. For

convenience, the quantity to be plotted is now defined as

10000{%3-1} (11)

where X (N) is the sum of (5) plus the first N terms of the

infinite summation appearing in (6). A comparison be-

tween Figs. 2 and 3 clearly shows the dramatic improve-

ment in numerical efficiency that is obtained by using (6)

and (9) instead of (1). In fact, the computer time needed
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Fig. 3. Convergence plot for the fast-converging expression of the
Green’s function.

to find the Green’s function by (1) with a relative ac-

curacy of 10-3 is typically 250 times as large as that

required to get the same result from (6) with a relative

error as lowas 10-’1.

An interesting point appearing from Fig. 3 is that for

the case considered here (5) actually represents a major

contribution to the Green’s function as suggested by the

intuitive argument presented before. In fact, neglecting at

all the infinite summation in (6) would lead to an error

smaller than 0.05 percent. Thus for this case we can write

G(P, Po; er)=G(P, Po: 1)+ rG(Z’, Po,; 1). (12)

Further investigation has shown that the error involved in

(12) is a rapidly increasing function of \P – Pol but re-

mains less than about 0.5 percent for \P – Pol <0.1 mm

for d= ().635 mm and c,= 10. In all such cases, (12) can be

used to calculate the Green’s function, thus further reduc-

ing the computation time by a factor of about 20. Note

that this is by no means a trivial point, since many

microstrip applications of practical interest involve the use

of strip conductors definitely narrower than 0.1 mm (e.g.,

the 3-dB interdigital coupler).

A final remark concerns the singularity of the Green’s

function at P= Po. First let yO>d. In this case by inspec-

tion of (6) and (9), it is found that the singularity is

confined to the quantity gO(P, PO) appearing in the first

term on the right-hand side of (6). For later convenience,
.1. - _ . . .. -- . . . . . . (O\ r-- — /’n n \ :“ -n.. . rewritten in the

s in2 ?r(y –yo)

2H 1
Aln {m(~~xo)}z+{n(:~yo)}’

+ 4TC0 T(x – Xo) + sin’ $’r(y –-Yo)
sinh’

2H 2H

+ So(l’, l’o) (13)

(14)

Note that the first and second terms on the right-hand

side of (13) are regular at P = Po, so that the singularity is

reduced to the simple logarithmic form (14). The Green’s
function may then be expressed as

G(P, PO;C,) = GR(P, PO;6,)+ ~(p, Po) ([5)

where GR is regular at P = P. and S = So. An expression

for GR is readily obtained from (6), (9), and (13).

In the case y. = d the actual charge and its partial image

are superimposed (P. ~Poi), so that (5) reduces to

(1+ r) G(P,Po: 1). (16)

Thus (15) is still valid with the new definition

S(P, PO) =(1 +r)so(P, Po). (17)

The expression (15) of the Green’s function is lparticulary

convenient in view of the application of the integral-ec~ua-

tion method, since it allows the singular terms to be

directly handled in closed form.

111. APPLICATION OF THE lNTEGRAL-EQUATION

METHOD

The rapidly converging expression of the Green’s func-

tion that was derived in the previous section will now be

used together with a new formulation of the integral-equa-

tion method to compute the electrical parameters of the

shielded microstrip structure in Fig. 4. To approximately

account for the effects of undercutting, the cross section

of the strip conductor is assumed to be of trapezoidal

shape [6]; the degree of undercutting is related to the

values of the angles @l, @z.

Let the center conductor of the structure be held at a

constant potential of 1 V. Then a Fredholm integral

equation for the unknown charge density on the strip

surface is

1 = ~G(P,l’o; E,)p(Po) dso (18)

where P, P. are points on the strip contour, and dso is the

differential line length around Po.

To change (18) into a matrix equation, the surface of
the strip conductor is usually divided into a num’ber of

subsections and a uniform or linear charge density disu-ib-

ution is assumed on each section [7]. In this paper vve will

make use of the well-known properties of the integration

formulas of Gaussian type [9] in order to optimize the

discretization process, that is, to obtain optimum accu racy

for a given order of the solving matrix.

As a first point note that the charge density p(Po) has a

singularity at each corner of the integration path. From

simple static considerations [10] it is found that the be-

havior of the charge density in the vicinity of each singu-

lar point depends on the angle between the two intersec-
tion conductors in the way summarized in Table I.
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Fig. 4. Cross section of shielded microstrip line in the presence of
undercutting.

TABLE I
BEHAVIOR OF ‘rHE CHARGE DENSITY IN THE VICINITY OF EACH

SINGULAR POINT ON THE COUNTOOROF INTEGRATION

Corner Behavior of P [PO]

+,-7!

2n -4,

A ]Po - A\

$2-.

Zm-$

B \Po - B] 2

-$2

7(+’$

D ]Po - D] 2

The integral on the right-hand side of (18) can now be

decomposed into the sum of four contributions of the

form

JT’2(G P, Po; C,)p(po) dso (19)
– T/2

arising from the four sides of the trapezoidal conducting

boundary. In (19) it is understood that the coordinates of

the point P. are related to the variable of integration so by

() 2s0
Xo=x+; l+Y Cose

()
~o= y+; 1+?!!

T
sin O (20)

where X, Y, 8 are constants whose values can be obtained

from Fig. 1 by inspection, and T is the length of the side

under consideration. If the charge density is now given the

expression

(T )“(:+SO)”R’PO’= W(SO’R(PO) ’21)
p(Po) = ~ – so

and a, ~ are chosen according to Table I so that the

function W(SO) accounts for the singularity of the in-

tegrand at so= t T/2, then R(PO) turns out to be regular

and finite over the closed interval – T/2 <so< T/2. Thus

if P does not belong to the integration path we can

compute (19) by the Jacobi–Gauss integration formula [9]

~~’ w(so)G(P,Po;c,)R(po) dso
– T/2

E j H, G(P,P1;c,)R, (22)
i=l

where m is an integer. The point P, appearing in (22) is

obtained from (20) by letting 2s./ T= x,, where x, is the

ith zero of the polynomial

vm(x)=(l –x)-”(l +x)-~ ~{(l–x)”+m(l +x)~+~}.

(23)

The ith weight has the expression

~= Ta+8+1r(m+ a+l)r(m+p+l)
1 (r(m+a+~+l))

‘22mm!

(1-+?){ P-~(xj)}2’24)
(J7 = Euler’s function), and R, = R(PZ).

If P belongs to the integration path, i.e., is obtained

from (20) for SO= S( – T/2 <s< T/2), then the integrand

of (19) has a logarithmic singularity at so=s. In this case

we make use of (15) and write

~~’2 w(so)G(P,Po;cr)R(po) dso
– T/2

=fT’2 w(so)G.(P,Po;c,)R(po) d$o
– T/2

[
‘~_;;2w(so)S(~po) ~(p,)- ~(p)~ dso

1

+ W(s) R(P)~_T:j2~(P, P,) dSo.

(25)

The first two terms on the right-hand side of (25) have a

regular integrand for – T/2 <sO < T/2 (in particular, the

integrand of the second term vanishes at so =s) and can

again be approximated by the Jacobi–Gauss formula; the

third term can be exactly calculated by means of (14).

Letting P= P, in (25) yields

J-:;, (G ~,Po; ~,)~(Po) dSo~ f jiRi (26)
icl

where

f,= ~iG(~,~l; Er) (i#j) (27)
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and While (30) can be considered typical, (31) define a highly

J~=H, GR(~, fj:cr) asymmetrical cross section, i.e., an extremely narrow strip

(-)”(*r

very close to the right electric wall. This choice is made

- ~ H,~(~~,) ~_ ~, intentionally, in order to give a clear accoulmt of the
,=1 performance of the method in a very ill-conditioned case.
I #J

Note that such dimensions are not unrealistic for present-
K

()
— ; a+ fl+’(l-x,)”(l +xj)f’ day MIC applications; for instance, the geometry dle-

+ 2%’E0 scribed by (31) could be associated with one of the odd

“[

TT(l – .xJ) modes propagating in a rnicrostrip 3-dB interdigit,ated
2–(1– Xj)ln 4H coupler [11 ].

Now let M be the total number of scalar unknowns
?i-T(l + .x,)

1
-(l+xj)ln 4H . (2g) used to solve the problem. The characteristic impedance

ZC of the microstripline was computed for several values

According to the previous section, in (28) we have K= 1+
of M ranging from 3 up to 200. Since no appreciable

r if the side being considered is AB, K= 1, otherwise.
change was found between ZC( 100) and ZC(200):, the latter

was assumed as the “true value” of the impec[ance,, i e.,
Finally, the contribution to the capacitance Per unit ZC(200)~ Z,(m). The percentage error 100 { ZC(M)/’Zc

length of the microstripline, arising from the side under (200) – 1} is plotted against M in Fig. 5, where the error
consideration, may be put into the form resulting from the application of the variational method

p’;wo)%+vz. [3] is also reported. This error is in excess (+ 0.6,1 percent)
(29) because the impedance was obtained from a lower-bound

calculation of the capacitance. Note that the variational
At this stage the way the integral equation (18) is dis- formulation of [3] had to be used for the present case,

cretized has become evident. For each side of the conduct- since the method of [2], based on the computation 01 f a

ing boundary a set of discrete points P, and a correspond- symmetrical cell, is inadequate for the highly a~symnmetri-

ing set c}f scalar unknowns R, is chosen according to the Cal geometry consideredhere. Fig. 5 shows that the ac-

above discussion. The electrostatic potential at any of curacY of the solution is rapidly increasing with increasing

these points, say ~, is then expressed as the sum of three M; for M >20 the error is lower than 1 percent, while an

integrals of the form (22) and one integral of the form accuracY better than 3 percent (which is usuallly enough

(25), ancl equated to 1. Repeating the same procedure for for all practical purposes) is obtained for M as low as 10.

all the values of j yields a matrix equation for the R,’s. From the figure it can be seen that the integral-equation
The off-diagonal terms of the system matrix are given by method becomes more accurate than the vari:Ltional ,ap-
(27), while the diagonal terms have the form (28). once preach for M larger than about 24.

the system has been solved by matrix inversion the capaci- The CPU time required to compute the characteristic

tance can be found by adding four contributions of the impedance is plotted against ~ in Fig. 6. Curves a and b

form (29). To speed up the computations, once the values refer to the use of the expressions (6) and (12) for the

of $ ~ and $J (usually +1= @z) have been established in Green’s function, respectively. The latter yields practically

relation to a given technological process, the abscissas and the same accuracY as the former since in the present case

weights of the Gaussian integration for selected values of ~ <0.1 mm. The Unit used to measure time is the cclm-

m are calculated once and for all, and then stored in the putation time required to obtain the variational solution.

computer memory as DATA items. Fig. 6 shows that the integral-equation apprc~ach yields

the same accuracy as the variational method (see the

IV. NUMERICAL I?JMULTS vertical line in the figure) in less than 4 time units by

The performance of the above approach will now be
using (6) and slightly more than 1.5 unit by (12). Further

discussed by comparison with the variational method [1],
note that if a 3-percent error is tolerated (114= 10), the

[2] for the special case of a thin microstrip (t= O,
computation can be carried out in 0.6 time units by (6)

41 = % = 0 In this case the Jacobi–Gauss formula re-
and less than 0.3 time units by ( 12).

The above considerations clearly show that the particu-
duces to a standard Chebyshev-Gauss integration [9] ~ f

since a=~= – 1/2.
ar ormulation of the integral-equation methocl described

Let us consider a microstripline having the following
in this paper is very efficient from the numerical point of

geometrical parameters (see Fig. 4):
view, its performance being comparable with that ob-

tained from the variational method. Furthermore, an ex-

a=7.6mm d = 0.635 mm cellent tradeoff between accuracy and time requirenwnts

H=lomm (30) can be obtained, which makes the method attractive for
E, = 10

bl = 7.5 mm
design applications. The situation is even more favorable

for better conditioned geometries than the one considered

w=75~m bz =25 pm. (31) above, such as symmetric microstrip lines.
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Fig. 5. Accuracy of the integral-equation solution verus order of the matrix to be inverted (the vertical line
corresponds to the value of kf for which the same accuracy is obtained from the integral-equation approach and
the variational method).
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M

Fig. 6. CPUtime rqtidby tietitegral-equation solution versus order of thematfi to be
inverted. Curves corresponds to the use of (6) forthe Green’s functions, curveb to the use
of ( 12).

An illustrative application to thick microstrips is shown ues considered encompasses both the cases of thin- and
in Fig. 7, where the characteristic impedance of the same thick-film circuitry [12].
microstrip as considered before is plotted against strip A few indications of technical interest can be drawn
thickness t in the cases of: a) no undercutting (+1= Q2= from Fig. 7. It is well known [1, pp. 32–34] that the
900); b) “normal” undercutting (@l =+2 =45 0,; and c) technique used to define patterns in metal layers strongly

“heavy” undercutting (+1= +Z = 300). The range of t val- influences the resulting cross-sectional shape of the strips.
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Fig. 7. Dependence ofmlcrostfip characteristic impedance onstfip tMckesstith: a—no undercutting

(%’% =90”); ~–’’no~a~ undercutting (+1 =+,=45”); c–’’heavy” undercutting (+1 =+,=300).

If a very thin seed metal layer is etched and then plated to

increase thickness and lower conductor losses, then a

cross section with practically no undercutting will result.

In this case, the change of the electrical properties of the

rnicrostrip lines with respect to the ideal thin-strip case

may be quite large as shown by Fig. 7 (curve u), especially

in the case of tightly coupled str-ips. On the other hand,if

a thick metal layer is etched to directly obtain the final

circuit, then “norma~: undercutting will typically occur.

The electrical behavior of the microstrip in this case is

definitely closer to that of the zero-thickness strip, as can

be seen from the figure (curve b). This is found to be true

to an even greater extent in the case of “heavy” undercut-

ting (curve c).

A final remark concerns the behavior of fired-film (or

thick-film) circuits. The cross-sectional shapes of the con-

ductors built by this technique [1, p. 44] are well ap-

proximated by the trapezoidal shape of Fig. 4 with +1 and

+Z of the order of 30°, corresponding to the “heavy”

undercutting case considered above for thin-film circuits.

Thus it is not surprising that conventional microstrip

calculations based on the zero-thickness assumption may

be used [ 12] to accurately design thick-film devices.

The above considerations have limited significance

from the design standpoint since they only provide quali-

tative information. In order to thoroughly account for the

effects c~f undercutting one should determine how the
zero-thickness design data for practical devices must be

modified when dealing with microstrip lines of trapezoidal

shape. Such problems are currently being investij~ated and

the results will be reported elsewhere.
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